Upcoming events

Breaking News

Save the date for our Annual BeSpatial Event and AGM  in early May!

Follow Us

Menu
Log in

BeSpatial Logo





The BeSpatial Student Bursary was renamed in 2022 in honour of Nathan Adams, a Master’s candidate studying Geography and GIS at the University of Guelph. Nathan had graduated from the University’s undergraduate Geography program and was working on his thesis to develop a new way of using AI for extraction of objects from a LiDAR point cloud when he died due to complications of Type 1 Diabetes at the age of 24 in 2021.

Student Flyer

There is a strong connection to the Adams family and BeSpatial Ontario. Nathan's cousin, Sarah Brooke, was the first student to win the award. Nathan’s mother, Dianne Adams, served on the board throughout her career. The Adam’s family is honoured that Nathan’s name will be associated with the annual bursary for other students working towards a degree in the GIS field.

Bursary value: $500

The BeSpatial Student Bursary is an annual award that recognizes the contributions of students studying at Ontario post-secondary institutions to the geospatial and information community. This is a great opportunity for students to get name recognition and begin participating in industry events.

To be eligible for this award, students must be currently enrolled in a certificate, diploma, post-graduate diploma, undergraduate, or graduate studies program in Ontario.

Broad topics for consideration can include the application of GIS in the following areas: Education, Geomatics Engineering, Environment, Natural Resources,Public Public Safety, Transportation, Facility and Asset Management, Business, and Analytics.  

The Student Bursary competition is now open!
Submit your application here


Application Guidelines

To be considered for this award, eligible students are asked to submit a story map and short paper detailing their project completed as a requirement for their studies in Ontario. Additional details are as follows:

  • Project descriptions should be no longer than 500 words and include its purpose, data used, and the solution that it provides.
  • The use of maps and other data visualization elements to describe project results are strongly encouraged.

Questions regarding the bursary should be sent to the attention of the manager of  Education.

2023 Nathan adams STUDENT BURSARY WINNER

Hannah Flores - University of Toronto

Biodiversity and Conservation Biology, Faculty of Arts and Sciences

In the Line of Fire, The homes of Amazonian indigenous peoples are turning to ash

Hannah Flores is a second-year student at the University of Toronto (St. George) studying human and environmental biology, and Spanish. Inspired by her Guyanese and Cuban heritage, Hannah was eager to study a growing concern at the nexus of environmental health, geography, and indigenous sovereignty in the Amazon: how forest fires impact the health of Amazonian indigenous populations.

As part of her submission, Hannah developed a Story Map that aimed to visualize the geographical infiltration of wildfires into Amazonian indigenous territories as of 2022. Beyond the geographical lens, this Story Map uses scientific, journalistic, and ethnographic data sources to convey the severe negative impacts that these fires have on the forest environments that indigenous communities call home, and the life-threatening health effects that the fires have on isolated indigenous tribes.


2022 Nathan adams STUDENT BURSARY WINNER

Melissa Jade Greco - University of Waterloo

Honours Planning, Faculty of Environment

Mapping Crime in Waterloo (2019), An Analysis of Total Crime Occurrences in the Region of Waterloo

The purpose of this project is to provide a snapshot of crime statistics based on all cases reported to the Waterloo Regional Police Service (WRPS) in 2019. Graduated symbols and choropleth maps are used to represent the geographic distribution of the total crime occurrences in the Region of Waterloo, as well as the distribution of three specific types of occurrences of interest, including breaking and entering, assault, and drug related cases.  The analysis may be used to illustrate which areas of the city have the highest total crime occurrences, and thus, which may require the most police resources. 

The project uses crime occurrence data published by the WRPS in CSV format as well as open data from the Region of Waterloo (e.g., regional boundary shapefile). ArcMap and ArcGIS online were used for data processing and map production. As mentioned, graduated symbols maps and choropleth maps are used to identify patterns in the data and identify crime hot spots.  Numerous geoprocessing tools were used in the creation of these maps, such as the XY table to point, generate tessellation, select by location/attribute, collect events, and spatial join geoprocessing tools.

2021 STUDENT BURSARY WINNER

Xuyang Han - York University

Geomatics Engineering
Dept. of Earth & Space Science & Engineering | Lassonde School of Engineering 

Clustering Marine Automatic Identification System (AIS) Data Using Optimized Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

Abstract:

Today, maritime transportation represents substantial international trade. Sustainable development of marine transportation requires systematic modeling and surveillance for maritime situational awareness. In this research, we present an enhanced density-based spatial clustering (DBSCAN) method to model vessel behaviours. The proposed methodology enhances the DBSCAN clustering performance by integrating the Mahalanobis Distance metric that considers the correlations of the points representing the locations of the vessels. The clustering method is applied to historical Automatic Identification System (AIS) data by proposing an algorithm for generating a clustering model of the vessels' trajectories and a model for detecting vessel trajectories anomalies such as unexpected stops, deviations from regulated routes, or inconsistent speed. Besides, an automatic and data-driven approach is proposed to choose the required initial parameters for enhanced DBSCAN. Two case studies present outcomes from the openly available Gulf of Mexico AIS data and Saint Lawrence Seaway and Great Lakes AIS licensed data acquired from ORBCOMM (a maritime AIS data provider). This work's findings demonstrate the applicability and scalability of proposed method for modeling more water regions, contributing to the situational awareness, vessel collision prevention, safe navigation, route planning, and detection of vessel behaviour anomalies for auto-vessels development towards the sustainability of marine transportation.

2019 Student Bursary Winner

Devon Kleinjan - University of Guelph

2019_Winner_Devon_Kleinjan-3-D Datascape Mapping of Toronto

Devon Kleinjan is entering his final year at the University of Guelph, studying Landscape Architecture. He is supplementing his professional degree with a minor is GIS. He is currently working as a Landscape Intern with the Hamilton Conservation Authority. His BeSpatial project submission stood at the intersection of Landscape Architecture, Geography and Technology. He is looking forward to being a part of BeSpatial for the professional and personal connections it can provide.

2018 Student Bursary Winner

Nebyu Woldeyohanes - Nipissing University, Ontario

Nebyu Studying Invasive Plant Distribution by Using GIS

Nebyu Daniel Woldeyohanes is a 3rd year Environmental and physical Geography student at Nipissing University, focusing in GIS and Environmental Management. He was born and raised in Ethiopia, coming to Canada when he was 15. He aspires to be a GIS specialist to be able to solve real life problems.

His project studied Invasive Plant Distribution through the Identification and Impacts of Water Hyacinth (Eichhornia crassipes) on Lake Tana, Ethiopia.

2017 Student Bursary Winner

Kyle Wittmaier - Nipissing University, Ontario

Kyle Wittmaier  Nipissing University, Ontario

Suitable Locations for Solar Panel Farm Development in the Niagara Region

This project was completed as part of the requirement for 2016 Esri GIS Scholarship. The objective was to identify the most suitable locations for setting up solar panel farms in the Niagara Region using GIS mapping techniques.

In recent years, Canada has invested heavily in renewable energy and the completion of this project would provide useful information in determination financial feasibility for establishing solar energy generation facilities. Location of suitable sites was determined using GIS multi-criteria evaluation analysis tools. The three main criteria were: accessibility/boundaries, topographic factors, and existing land cover/use. All criteria were individually analyzed and then combined using the Weighted Sum tool before Boolean logic was applied to remove restricted development areas. The results show that there are three clusters of suitable locations present in the Niagara Region near the municipalities of Lincoln, Niagara Falls, and Fort Erie. These are the areas where future solar panel farm development should be considered.


About Us

We are recognized as the premier geospatial and information non-profit organization in Ontario. where members share their experiences through networking and program events for the use and integration of spatial data, information, applications and technologies that provide solutions and solve challenges in both the public and private sectors.


Become a Member

Show your commitment to the Geospatial Community by joining us. Be part of a dynamic geospatial and information community whose mandate is to advance the effective application of spatial and information to enable business services and decision making.  

MEMBER BENEFITS

 Education and research.

 Networking.

 Discounts and member-only events.

Find Us

Contacts:

For membership inquiries contact: Membership

For website issues contact: Web

All other inquiries contact: Info

You can also check our FAQ

BeSpatial Logo

Powered by Wild Apricot Membership Software